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O N  T H E  S T A B I L I T Y  O F  S H O C K  W A V E S  

IN A C O N T I N U O U S  M E D I U M  W I T H  A S P A C E  C H A R G E  

A. M. Blokhin ,  Yu. L. Trakhinin ,  and I. Z. Merazhov 1 UDC 533.6.011.72:537.8 

The stability of  shock waves is discussed for a hydrodynamic model of  motion of a continuous 
medium with a space electrical charge. The correctness of a mixed problem obtained by 
linearization of  the hydrodynamic model and the equations of a strong discontinuity for  
electrohydrodynamic shock waves is proved. As is known, this indicates stability of this type 
of strong discontinuity in the model of a continuous medium considered. 

I n t r o d u c t i o n .  The  motion of a continuous medium with a space electrical charge has aroused steady 
interest in connection with various practical applications [1]. The problem of construction and substantiation 
of the basic electrohydrodynamic (EHD) equations is far from being adequately solved, in contrast to, say, 
problems of magnetohydrodynamics.  

In the present paper, the system of EHD equations adopted as the basis in [1] is discussed in the 
context of the theory of equations with partial derivatives. In comparison to the system described in [2], it 
has a number of advantages from the viewpoint of the theory of differential equations. This is very important,  
e.g., in substantiation of numerical methods of solution of specific EHD problems. 

In the present paper,  the  correctness of a mixed problem obtained by linearization of the EHD equations 
and the nonlinear relations for electrohydrodynamic shock waves is proved. This means that  this type of strong 
discontinuity is stable in the  model of a continuous medium considered. 

1. Bas ic  E H D  E q u a t i o n s .  The EHD equations in a one-liquid approximation have the form [1, 2] 

Pt + div (pu) = 0; (1.1) 

(pu)t + div 1:I = 0; (1.2) 

(pe)t + d i v W  = (J ,E) ;  (1.3) 

qt + divJ  = 0; (1.4) 

d ivE = 4~-q; (1.5) 

rot E = 0. (1.6) 

Here p is the density of a continuous medium, u = (ul, u2, u3)* is the velocity of a continuous medium (the 
asterisk denotes transposition),  fI is the momentum flux density tensor with the components l:lik = puiuk + 
p$ik - Pik (i, k = 1, 2, 3), p is the pressure, E = (El,  E2, Ea)* is the electric-field strength, e = e0 + (1/2)]ul 2, 
e0 is the internal energy, W = (W1, W2, W3)* = pu(e + pV),  V = 1/p is the specific volume, d is the 
current density, and q is the charge. The components Pik of the Maxwell stress tensor P have the form 
Pik = (1/4,0(E E  - IEl g k/2). The thermodynamic variables are related by the Gibbs relation 

Tds = deo + pdV (1.7) 
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(s is the entropy and T is the temperature).  By virtue of (1.7), the equalities 

p = -(eo)v = p2(eo)p, T = (eo)~ (1.8) 

are valid. 
The current density J is related to the velocity u and electric-field strength E by the Ohm law 

J = q(u + bE) (1.9) 

(the constant b > 0 is the mobility [1, 2]). Thus, with allowance for the equation of state e0 = e0(p,s), 
equalities (1.8), and the Ohm law (1.9), Eqs. (1.1)-(1.6) can be regarded as a system for determining the 
components of the vectors U = (p, s, u*)* and E and the charge q. In this case, the Maxwell equations (1.5) 
and (1.6) can be reduced to one Poisson equation for the scalar electric potential ~ (E = - V ~ ) :  

A~o = -47rq. (1.10) 

By virtue of (1.5) and (1.6), the vectorial equation (1.2) can be written as 

(pu)t + div H = qE, (1.2') 

where H is the momen tum flux density tensor with components Hit = puiuk + P$ik). Then (1.1), (1.2'), (1.3) 
is a system of gas-dynamic equations with right members which can be written in nondivergent form: 

1 dp (eo)psq 2 ds b p-~lEI 2, du 
pc - ' ~  d--t + div u = b ~ l E  I , d---t = _ _  P~"  + Vp = qE, (1.11) 

where d/dt  = c3/Ot + (u, V) and c = ~/(p2(eo)p)p is the speed of sound in a gas [3]. System (1.11) can be 
written in symmetric form. Under the assumption that  the thermodynamic quantities satisfy the inequalities 
p > 0 and (p2(eO)p)p > 0, the system will be symmetric t-hyperbolic (after Friedrichs) [4, 5]. Below we study 
the case of a polytropic gas [3, 4]. 

2. E q u a t i o n s  o f  a S t r o n g  Discon t inu i ty .  We consider piecewise-smooth solutions of system (1.1)- 
(1.6), in which smooth pieces are separated from each other by the surface of a strong discontinuity [3, 6], 
described by the equation 

] ( t ) , x )  = / ( t , x ' )  -- x l  = 0 [x = (Xl ,X') ,  x'  = (z2,  x3)]. (2.1) 

Following [1, 3, 6], we write conditions on the strong-discontinuity surface for the EHD system (1.1)-(1.6): 

s - [p=l] + s + h3[p=3] = 0, f t [p-d  - [fIld + h2[fI2d + h3[fI3d = 0 (4 = 1,2,3), 

c3a 
f,[p~] - [w1] + h~ [w2]  + G3[w31 = o, [JM] = 0-7' (2.2) 

[EN] = -4~a ,  [Ek] + G~[E1] = 0 (k = 2, 3). 

Here we used the notation of [4]. In the derivation of these relations, it was assumed that  a surface charge 
a = a(t ,  x') can exist on the surface (2.1). According to the recommendations in [1, 6], we ignored the surface 
current strength. 

R e m a r k  2.1. For shock waves, i.e., for j ~ 0 and [p] # 0 [3" = p(UN -- ON) ,  uN = (u, N), DN = 
- f t / J V ] ] ] ,  the system of strong-discontinuity relations is a closed system for a given value of a. From the 
flow parameters before the discontinuity and the value of a it is possible to determine the flow parameters 
behind the discontinuity front. 

3. F o r m u l a t i o n  of  t h e  Basic  P r o b l e m  of  t h e  S t a b i l i t y  of  E l e c t r o h y d r o d y n a m i c  Shock  
Waves.  We linearize the EHD equations (1.1)-(1.6) and the strong-discontinuity relations with respect to 
the basic piecewise-constant solution: 
for Xl < 0, 

U(t ,  x) = l[loo = (/~oo, ~oo, filcr 0, 0)*, E(t ,  x) = l~oo = (~:zoo, 0, 0)*, q(t, x) = 0; 
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and for zl > 0, 

U( t ,x )  0 (/~,~,fi,,0,0)*, E( t ,x)  E " * = = = = ( E , , 0 , 0 )  , q ( t , x ) = 0 .  

This solution satisfies conditions (2.2) if the discontinuity front is motionless and is described by the equation 
zl = 0, i.e., for xl = 0 the following relations hold: 

[ j~2] [/~ ( lul2-t-il)l/')l :0,  [Eli =4-~. (3.1) 13]=o, 8.J =o, 

Here i~oo = p2(eo)p(P~, soo), Too = (eo)s(~oo, ~oo), i5 = ~2(eo)p(), ~), 7" = (eo)s(~, ~), ~o = eo(~, ~), [i = ~fi,, [~, 
Poo, -~, -~oo, ill, filoo, El ,  and/~loo are some constants, and & = const is the magnitude of the surface charge. 
In addition, it is assumed that the stationary discontinuity (3.1) is a shock wave, i.e., fil :fl 0, filoo # 0, and 
[t3] # 0. After linearization we obtain the basic mixed problem of the stability of electrohydrodynamic shock 
waves. 

Basic P r o b l e m .  In the region t > O, x E R3+, we seek a solution of the system 

L p +  d ivu  7 - 1  7 - 1  = - - q ,  Ls = ~ q ,  M 2 L u + V p = / t q ,  
7 7 

Lq + &l~lq = 0, div E = 41rq, rot E = 0, (3.2). 

and in the region t > O, x E R 3, we seek a solution of the system 

Loop + div u = 7 - 1 q ,  Loos = 7 - 1 q ,  M ~ L o o u + V p = / L o o q ,  
7 7 

Looq + &loo~lq = 0, d ivE  = 4~rq, rot E = 0. (3.3) 

For zl = O, the solutions of both systems should satisfy the bounda~ conditions 

u, + dp +doE,  oo + dlpoo + d2u,oo + dasoo + d4~ = 0, uk = ~Fzk + ~Ekoo + fiukoo (k = 2, 3), 

Ft = pp + poEloo + tqP~ + p2uloo + p3soo + p4fl, (3.4) 

8 m tip q-//0Eloo "4-//lPoo 4-//2ttloo +/'3300 -I-//4fl, 
q = O, qoo + 02fit ,  E ,  - d E ,  oo = 4rft, gk - dEt~oo = - ~ F =  k ( k  = 2,  3 ) ,  

and for t = O, they should satisfy the initial data 

Vl,=o = Vo(x), EIt=o = So(x), qlt=o = qo(x), x e / ~ ,  

Here 

F],=o = Fo(x'), a[,=o = ao(x'), x' n 

a 
x'eR2}; Loo= +6; V=(6,6,6)';  

fil M 2 fi2 1 fi2 leo. 
~k = ~xk0 ( k = l ,  2, 3); ze=.u,oo ; _!1.~2, c2 = 3'Pl)'; I /=- : 'p  ML-'= coo'2' 

coo = Poo 7&]oo, 0, 0 ; 

&l = bE1. &zoo booEloo 
fil filoo 

(3.5) 

The constant boo > 0 is the mobility for zl < 0 (it is assumed that the mobility is different on both sides 
of the discontinuity). Systems (3.2) and (3.3) are written in dimensionless form. Boundary conditions (3.4) 
are obtained by linearization of relations (2.2) and are written in dimensionless form; the coefficients in the 
boundary conditions can easily be written. During solution of the basic problem (3.2)-(3.5), we also obtain the 
functions F = F(t ,  x'), a small displacement of the discontinuity front, and fl = fl(t, x'), a small perturbation 
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of the surface charge. Two relations from boundary conditions (3.4) should be regarded as equations for 
determining F and ~. Without the last two equations systems (3.2) and (3.3) can be written as 

3 

A(~ + y~ A(k)Vxk + A(4)V = 0; (3.6) 
k = l  

3 

A~ )vt  + E A~)V~k + A~ ) v  = O, (3.7) 
k = l  

where V = (U, q)* and matrices A(D and A~ ) (k = 0--~) can easily be derived. 
Remark  3.1. By virtue of (1.10), the last two relations in systems (3.2) and (3.3) (the Maxwell 

equations) reduce to one Poisson equation for a small perturbation of the potential ~o: 

A~o=--47rq, xER~:,  t > 0 ,  (3.8) 

where ~ is a dimensionless quantity. The boundary conditions for (3.8) have the form 

Oxl d - -4~r~, ~ - d~oo = f~F. (3.9) 

Thus, to determine the potential ~ we have the diffraction problem (3.8) and (3.9) [7]. 
4. Invest igat ion of Condi t ions  (3.1) on a Sta t ionary Discontinuity. Let a stationary 

discontinuity that satisfies conditions (3.1) be a shock wave (fi1,filoo # 0, and [~] # 0). We write the 
second and third relations of (3.1) as 

/~ = -TM2fi + h ,  1 -/Sfi + ~ M2(1 - fi2) = 0, (4.1) 

where/X = 1 + 7M2(1 - ~),/~ = #oo/#, and ~ = 1/ze). Then we assume that $ is a small parameter ([$] << 1) 
and the conditions 

.~>$oo, ifi>l~oo>0, # > # o o > 0 ,  f i l ~ > f i 1 > 0  (4.2) 

are satisfied. For $ = 0, t h e e  are the evolution conditions for shock waves in ordinary gas dynamics [3, 6, 8] 
(the evolution of electrohydrodynamic shock waves in the general case, i.e., for nonzero ~, is investigated in 
[1]). Since a polytropic gas is considered, in view of the first relation of (3.1), inequalities (4.2) can be written 
a s  

/~fi~<l, 0 < / ~ < 1 ,  O > l .  (4.3) 

From (4.1) we obtain a quadratic equation for determining fi and out of the two roots of this equation we 
choose the root 

f i= 7 A +  A 2 _ 2 7 + 1  l + 7 - - 1  A = l + l - - ~ ,  l = - ~  , 
�9 ' y ~ l  7 

which is less than unity for ~ = 0 (the other root is equal to unity for $ = 0). We obtain the following 
expression for i0: 

15=77M2 { A - - 7 1 A 2 - - 2 " Y + 1 ( l + 7 - - 1 )  } + - - - i "  3' - ~  " 

For I~1 << 1, the evolution conditions (4.3) for electrohydrodynamic shock waves impose the following 
restrictions on the main-flow parameters: 

7 - 1 M 2  2 M2~ 
~ <  <1,  Moo= >1.  (4.4) 

27 P 

Remark  4.1. For the small parameter ~, the coemcients of boundary conditions (3.4) can be 
represented as d = d(~ + 0(~) ,  d0 = 0(~) ,  do = 0(~) ,  i = ~(0) + 0(~) ,  ~ = ~(o) + 0(~) ,  ~o = 0(~),  
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v = v (~ + O($), v] = O(~), and ~ = O(~), where d (~ ~(0), p(0), and v (~ are some constant numbers. It 
is assumed that the condition of smallness of ~ (1~1 << 1) is satisfied by virtue of the smallness of the jump of 
the normal component of the electric-field strength on the discontinuity, i.e., 

]  1oo 

sgn ~:1 = sgn]~loo, and the quantities E1/(filv/8v~) and ~:loo/(filx/8x/8x/~/) are not small. 
R e m a r k  4.2. Taking into account the specificity of the stationary discontinuity (3.1), one obtains 

several variants of the basic problem. In the formulation of mixed problems for systems (3.6) and (3.7), it is 

necessary to know the eigenvalues of the matrices A0) and A~ ). The eigenvalues of the matrix A0) have the 
form 

1 + M 2 :k ~/(1 + M2) 2 4- 4(1 - M 2) (4.5) 
~1 = i ,  A2,3 = M 2, A4 = 1 + t 5 1 ,  As,6 = 2 

of a similar form. By virtue of (4.4), we have A],2,3,s(A(])) > 0 and The matrix A~ ) has eigenvalues 

A1,2,3,5,6(A~ )) > O. 
R e m a r k  4.3. Let the conditions 

l+d~]oo>O, l+d~] >0 ,  (4.6) 

14-dJ1oo<O, 14-&i <0 ,  (4.7) 

o r  

o r  

l+&1oo>O, 1-17&i<0 (4.8) 

be satisfied. With satisfaction of (4.6) all eigenvalues of the matrix A~ ) are positive, i.e., for system (3.7) one 
need not set boundary conditions for zl = 0. At the same time, by virtue of (4.5), system (3.6) requires five 
boundary conditions. Thus, to pose the basic problem correctly from the viewpoint of the number of boundary 
conditions with satisfaction of inequalities (4.6), it is necessary to establish satisfaction of the identity 

f~ -= 0. (4.9) 

Otherwise, the basic problem will be underdetermined in the number of boundary conditions. Similarly, in 
the case of satisfaction of conditions (4.7), the basic problem is correctly posed in the number of boundary 
conditions if identity (4.9) is satisfied. When conditions (4.8) are satisfied, it is correctly posed if f / ~  0. Note 
that, with satisfaction of the conditions 1 Jr &]co < 0 and 1 4- wl > 0, the basic problem is underdetermined 
even for 1"1 _= 0. 

R e m a r k  4.4. The physical meaning of conditions (4.6) is that with satisfaction of these conditions, 
by virtue of the Ohm law (1.9), electric current flows downstream of the discontinuity from left to right [in 
the case of satisfaction of conditions (4.7), electric current flows upstream of the discontinuity from right to 
left]. With satisfaction of conditions (4.8), electric current is directed to the discontinuity from both sides, 
generating a surface charge on the shock wave. 

5. Inves t iga t ion  of t he  Cor rec tness  of the  Basic P rob lem.  We describe the process of deriving 
an a priori estimate without loss of smoothness for the solution of the basic problem in the case of satisfaction 
of conditions (4.6). For this, we construct extended systems for systems (3.6) and (3.7) [4]. The process of 
deriving these systems consists of two stages. In the first stage, from (3.6) and (3.7) we construct extended 
systems (for determining the components of the vector V and its derivatives) and write for them identities of 
the energy integrals in differential form [4]. Integrating the identities over the regions R~, and R3_, respectively, 
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and combining the resulting expressions, we obtain the equality 

dlo( t ) -  g[(A(pl 'vp ,  Vp)l] dx'q- f//((a(: + a(4'*)v/,, Vp)dx 
R2 z I =0 R3 

where 

f// ~ ( 4 ) , ~ v  Vp) dx = 0,  + ((A(~ + "',oo ,--p, 
R3 

= * * * " V * " V *  2 �9 �9 * r  �9 2 �9 V *  V *  2 V *  V *  Vp ( V , r V , { l V , g 2  ,g3 , r  V , r ~ l V , r { 2 V ,  ~ 3 V , { I V , { l ~ 2  ,~1~3 ,~2 ,~2~3 ,~2V*)  *, 

(5.1) 

A (~) = diag(Is x A('~),e(I,o x A<~))), A ~  ) = r/(I,5 x A ~  )) (a = 0-~) are block diagonal matrices, I5 x A(=) are 
the Kronecker product of the matrices Is and A (~), Is is a unit matrix of the order of 5, etc., and ~ and r />  0 are 
some constants. In the derivation of (5.1), it was assumed that IVpl --+ 0 as Izkl-+ oo (k = 1, 2, and 3). 

Estimating the second and third terms in equality (5.1) by means of boundary conditions (3.4) for 
= a(1) (see Remarks .4.2 12 0 and system (3.2) for zl = 0, by virtue of the positive definiteness of the matrix +~poo 

and 4.3), we obtain the inequality 

::d Io(t) + r /Amin/f(Vpoo,Vpoo)dx'-  N,H,(t)- N~H2(t) <<. N2Io(t), (5.2) 
R2 

where N1, N2 > 0, and N~ = O(6) are constants; 

H,(,) : //{/+~=2+q+/,+p=,~ + p=,~ +p=~2 +...}[ +~(P+R) + (v,~,v,=)dx'; 
R2 " Xl=0 

xl=O i~l  j=i " zl=O 

R =  ~ ~ ( u i ) : :  k H~(0 = ~ dx'; 
i=2 j=2 k=j J Izl=O Xl=O 

~: = [E~176  + + 0Z2 q" ["-~-X3 [ 
Xl=O 

02Ecr 102E~012 102Eoo12 102Eoo: 02Eo ~ 2 102E 2/ 
+~ at: + lOtO:2l + loto:~l +l o:~ + az2Oza +[ a:] J" 

We estimate H2(t) using the integral Hi(t). For this, we apply a Fourier transform to problem (3.8) and 
(3.9) with allowance for (4.9). As a result, we obtain the following boundary-value problem for an ordinary 
differential equation: 

d2~ dx~ w2~ = - 4 r ~ ,  X 1 ,~ 0; (5.3) 

( a ~ - d ~ )  L,=0 = o, (~- d~oo)[=,=0 = ~P. (5.4) 

Here ~b, ~, and P are the transforms of the Fourier functions ~0(t,x), q(t,x), and F ( t , x ' ) ;  ,o 2 = 4.21~'[ 2 = 
41r2(~2 + ~2) < oo, where ~' = (~2,~a) is the parameter of the Fourier transform. Following [4], it is easy to 
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obtain a solution of the boundary-value problem (5.3) and (5.4): 

1 
qb = --rh exp (--WXl)C2 + 91, (~t = 2 c2 exp (--WXl) + uayl + 02 (Xl > 0), 

= qooexp ( ~ )  +9~oo, ~' = c~oo~exp ( ~ )  +~9~oo +92oo (z, < 0), 

where 

(9~, 92)* = ./G(~ - ~)f(t, ~ , ( )  dr; (91oo, ~2oo)* = 
o / G(xl - T)f(t, r ,~ ')  dr; 

--OO 

(o) 
f = - 4 r ~  ; c1r ~ 0 2d 

o 

c2 = -4~'d f exp (wv)~l(t,~',~') dv - fCw[ z. 
--OO 

The function H~_(t) is the sum of integrals: 

(5.5) 

( 02 E3oo ~ 2 
j 

R2 R2 R2 

Using the Parseval equality, the second and third boundary conditions in (3.4), and relations (5.5), we obtain 
the inequality 

R 2 R 2 Xl=0 R2 

+ K 3 N  / e x p  (-wr)Odr + (wr)~ldr d( ,  (5.6) 
R2 0 

where K1,/(2, K3 > 0 are constants, which can easily be written. 
From the last equation of system (3.6) it follows that the function 

OO 

= r ( )  = / exp (-,,- '),Xt, ~', @ ( )  dr 
o 

satisfies the equation -3 

(~t + (1 + &l)W(I) = (~(t, + 0 , ( ) ,  (5.7) 

where 0(t, +0,~')  = ~(t,r,~')[r...+0 = 010(t,r,~')[r_._ o = Ol0oo(t,~') (we assume that q --* 0 for zl  --+ oo). 

From (5.7) we obtain 
oo t 

(1) =exp (--(I + ~l)Wt)/exp (--w'r)Oo('r,() d'r +01/exp (-(i + c31)w(t - z))Ooo(z,~')dz. (5.8) 
o o 

On the other hand, by virtue of the first inequality of (4.6) and the last equation of system (3.7), the 
function q(t, x) for xl < 0 is defined through the initial data as follows: 

q(t ,x) = q0(xl - ~(1 +&loo)t,x ') ,  xl < 0. (5.9) 

We assume that the function q0(x) is finite in xl with the supporter suppq0 = ((zloo, z0oo)U(z0, z l ) )xR 2, 
where - o o  < zloo < z0oo ~< 0 ~< z0 < zl < oo. Then, taking into account the HSlder inequality and (5.9), 
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from (5.8) we have 
c~ 0 

[~12 ~< Co /19012 dr + C1 / 19012 tiT, (5.10) 
0 --co 

where the constants Co, C1 > 0 depend on zl~,  z0oo, z0, and zi. Thus, using the Hblder inequality, from 
(5.6) and (5.10) we ultimately derive the estimate - 

N E12=dx' ~ K, N(u 2 -I-u~) dx'+/{'2 N(u22~ -I-u~oo) dx' -I- K4Io(t), 
R2 R2 z I =0 R2 

where K4 > 0 is a constant. Similarly, it is possible to estimate the remaining integrals in the sum for H2(t). 
As a result, we obtain the estimate H2(t) ~< Nsgl(t)  + N4Io(t) (N3 and N4 > 0 are constants) from which, 
using the property of trace of the function from W~(R3+) on the plane xl = 0 [9], we derive the inequality 

g 2 ( t )  ~< g3ii(,(e + R) + (vpoo,vpeo))dx t +/v410(t), (5.11) 

R 2 

where N4 > 0 is a constant. 
From boundary conditions (3.4) and system (3.2), for Xl = 0 we obtain 

3 
((2 + (2)u k = (/31"r +/32(1)(kp--dov(kE1oo + E D~ i))uic~ + D(4)poo + D(5)soo + D~ 6)q~176 

i=1 

( k = 2 , 3 ) ,  x l = 0 ,  

/32 = /9  s /M 2, /3 = %/1 - M s (M < 1), and the differential operators D~ i) (j = 1---,5) are where 131 = - 1  - d, 
of the form 

D(ti) = y]~ aao,ar-ki ao-ar , D(6) = dtl r + dk(2 jr d3(3 , k  
ao+lal=2 

where ao is a nonnegative integer, a = (hi ,  a2, as) is a multiindex with nonnegative integral components, 
-'~l-ai-a3 - ki d k are expressed in terms of the coefficients la[ = al+Ot2+aa, (a = gl ~2 gs , aria the constants d~o,a and 1,2,3 

of boundary conditions (3.4). Then,  using the known inequality [10] 

s + (~k)  2 
N P a / x '  ~< c o n s t g  t__~2((22u k dx' 
R2 Zl=0 

<-~ClLikE=2((~IT'l-~2(1)(kp)2 zl=0 dxt+C2H2(t)-.[-C3R 2 (Vpoo,Vpoo) dx '  

(O1,2,3 > 0 are constants) and the  property of trace of the function from W~(R~.) on the plane x, = 0 with 
allowance for (5.11), we reduce inequality (5.2) to the form 

+ - vpoo)- dx'  sIo(t) (5.12) 
R2 

(/VI, /~/2, and N3 > 0 are constants). Note that in the derivation of (5.12), r < 1/(N3(1 + 6'2)). Inequality 
(5.11) can be written as 

H2(')  ~< e'/~r3 S / P  dx'+ C 4 / / ( V p ~ ,  V,co) dx' -}-/V410(t), (5.11') 
R 2 R 2 

g 3 =  N3Cl >0,  ~ 4 =  N4 >0,  
1 - e N s ( 1  + C2) 1 - eN3(1 + 6'2) 

where 
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where N4,s, and /~/~ 
differential form [4]: 

and C4 > 0 is a constant. 
We proceed to the second stage of construction of the extended system. Note that the function p for 

xl > 0 satisfies the wave equation 

{(r,)2 _ (~,1)2 _ ~2 _ ~2}p = 9-, (5.13) 

[9-1 = (M2(7 - 1)/'7)Lq - 1/(Tcbl)~lq], where the new differential operators r '  and ~ are given by the 
formulas r = (fl/M)v' and ~1 = (1/fl)~ + (M/fl)r ' .  If the function p satisfies Eq. (5.13), the vector Y = 
(r'p, ~p ,  ~2p, ~3p)* satisfies the symmetric system [4] 

(Br '+ Q~'1 + R2~2 + Ra~3)Y = 9", x e /~+ .  (5.14) 

Here 9" = 9"(ml, 12, h )  = (9"1,-m19"1,-129"1,-/39-1)*, where rnl, 12, and 13 are constants; the matrices B, Q, 
R2, and R3 can easily be derived (B > 0 if m~ + 122 + 132 < 1). 

As in gas dynamics [4], taking into account boundary conditions (3.4), systems (3.2) and (3.3), and 
Eqs. (5.13), for zl = 0 we infer that the function p satisfies the boundary condition 

(r '  - a(~)Zp + 9"0 = 0, (5.15) 

where L = a l C +  a2~; 

M 2 3 
9"0 = - -r{dor - d o t 6  - + + D(Ou oo + D")poo + D(% o + 

i=1 

D ('i) = ~_, dJao,a'ra~ a, j = 1,5; D (6) = d0)v + d(2)~2 + d(3)~3; 
a0+lal=2 

the constants d~0,a and d(1,2,3 ) are expressed in terms of the coefficients of boundary conditions (3.4). For the 
vector Yp ( f l y . ,  i �9 �9 . ,  = ~IY ,~2Y ,~3Y LY*)*, from (5.14) we construct the extended system 

+ + n ,6 + n ,6} = 9",, (5.16) 
where By, Qv, R2v, and R3p are block-diagonal matrices of the order of 20, B v = diag (alBl,cr2B2, 
aBBa,(r4B4,asBs), Bi = B(mml2i,13d, etc., ai  > 0, ml i ,  12i, and 13i (i = 1---.5) are constants, and 
m~i + l~i + l~i < 1. Choosing appropriate coefficients, it is possible to convert this system to a symmetric 
t-hyperbolic system (after Friedrichs). Furthermore, taking into account (5.15), it is possible to estimate the 
quadratic form as 

- ( Q p Y , , Y , ) I , I =  0/> N 4 P -  N ~ -  Ns(V,  oo,Vpoo), (5.17) 

are positive constants, /Q~ = 0(~). For system (5.16) the energy integral is written in 

(DvYv, Yp), +/~(QpYp, Yv)z, + (R2vYp, Yp)z2 + (R3pYp, Yp)za + 2(Yp, 9-p) = 0. (5.18) 

Here Dp - (M/I~)B v - (M2/t3)Qv > 0. We integrate (5.18) over the region R~, assuming that [Yvl --* 0 for 
11, I12,3[ --~ oo. As a result, taking into account (5.17), (5.1V), and the property of trace of the function from 
W~(R3+) on the plane 11 = 0, we obtain the inequality 

+ f f  (g6P-  gT(vvoo,Vpoo))dx' <~ gs(I,(t) + lo(t)), (5.19) 
R 2 

where N6,7,s are positive constants, and 

Ii(t) = / / / (DpYp ,  Yp) dx. 
Ra 

Combining inequalities (5.12) and (5.19) and taking into account that choosing appropriate constants e 
and z/, one can achieve positive definiteness of the quadratic form (N6-eN1 )P + (t/Amin- N 3 -  NT)(Vpoo, Vvoo), 
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we obtain the inequality 

d I(t) <~ NyI(t), t > O, 

where I(Q = Io(t) + Ii(t) and N9 > 0 is a constant. The last inequality leads to the a prior/estimate 

I(t) <<. exp (Nyt)I(O), t > 0. (5.20) 

Then, from (5.5), (5.20), and the Parseval equality we obtain the desired a priori estimate 

HZ(t)IIW~(R]:) ~< N10, 0 < t ~< T < oc, (5.21) 

where Z = (V*, E*)*; Nl0 < oo is a positive constant that depends on T; [[Z(t)[[wg(R~ ) = [[Z(t)[[W~(g~ ) + 

[[Z(t)[[w~(/z~). As in [4], for the function F( t ,x ' )  we can obtain the estimate 

[[F[[w3((0,~)• ) <~ Nan, (5.22) 

where Nll < oo is a positive constant that depends on T. 
The a priori estimates (5.21) and (5.22) indicate that in the case of (4.6), the basic problem of the 

stability of electrohydrodynamic shock waves is correct under the assumptions that on the discontinuity the 
jump of the normal component of the electric-field strength is small (see Remark 4.1) and the function of .the 
initial perturbation of the charge q0(x) is finite in xl ahead of arid behind the discontinuity (for xl < 0 and 
zl > 0). 

R e m a r k  5.1. Using the positive definiteness of the matrix A ~  ) and the procedure of deriving of an a 
prior/estimate described above, it is possible to prove that the basic problem is also correct when conditions 
(4.7) are satisfied. When conditions (4.8) are satisfied for - 1  < ~bloo < 0, i.e., E~oo < 0, the condition of 
smallness of the coefficients d0, do,/~0, and v0 can he satisfied (see Remark 4.1). In this case, the function 
f/(t, z ~) is determined from the sixth boundary condition (3.4) via the initial data q0(x), x E R~ at za = 0. 
Further reasoning for deriving an a pr/or/estimate for the basic problem is similar to the reasoning for the 
cases of (4.6) and (4.7). 
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